Stabil-loc Systems, LLC. - 2.875" O.D.

Adjustable Head Assembly (Bracket) Capacity Calculations - Galvanized

Client: Stabil-loc Systems, LLC. Job Number : FC08472 Report Date: 3/21/2019 REV2

Adjustable Head Assembly (Bracket) Design Properties

Product: 6x4 Angle A36 Steel Thickness (in): SPECIFIED 0.375 Angle Length (in): 15 SPECIFIED

Yield Strength (ksi): SPECIFIED MINIMUM Ultimate Strength (ksi): SPECIFIED MINIMUM 58

<u>Design References</u> AISC 14th Edition, AISC 360-16, 2017 AC358, 2015 IBC

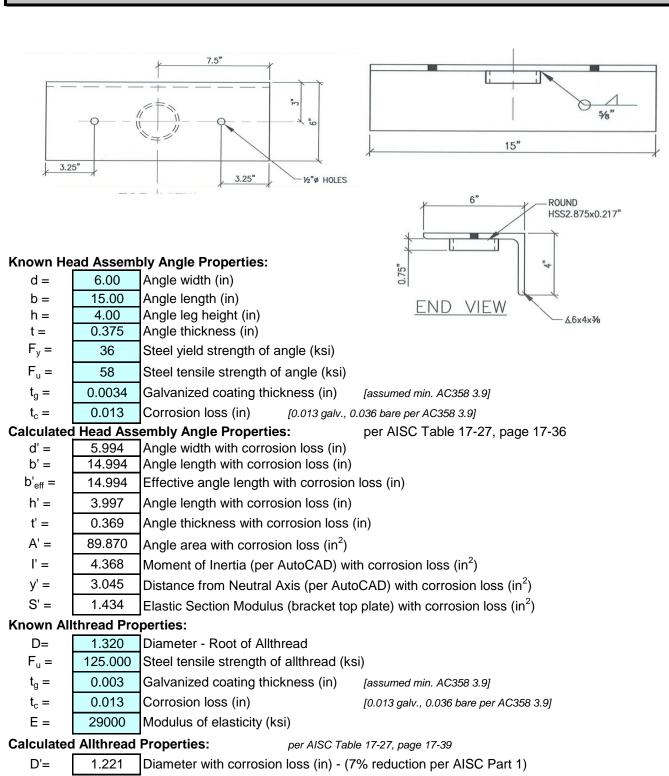
Note: Capacities may be limited by shaft capacities.

Table of Contents

Page #	Description		
1-3	Dimensions and Properties		
4-6	Compression Capacity - Connection to Structure w/ No Pipe Supports		
6	Compression Capacity - Internal Bracket Strength w/ Pipe Supports		
7	Compression Capacity - Connection to Structure w/ Pipe Supports & Summary		
8	Summary		
9	Alternate Concrete Parameters - Dimensions and Properties		
10-11	Alternate Concrete Compression Capacity - Bracket to Structure		
12	Alternate Concrete Parameters - Summary		

Capacities Summary Table

Capacity Type	Capacity (kips)	Min Cover (in)	Controlling Factor
Compression - Added Plate	113.3	16.0	Total Capacity of Adjustable Head Assembly (Bracket) with Pipe Supports (Gusset Welds)
Compression - No Plate	113.3	19.0	Total Capacity of Adjustable Head Assembly (Bracket) with Pipe Supports (Gusset Welds)
Compression - No Plate (Alt. #1 Concrete Parameters)	32.7	8.0	Concrete Two-Way Shear (Punching Shear): Note: This requires a 24" wide footing
Compression - No Plate (Alt. #2 Concrete Parameters)	55.6	12.0	Concrete Two-Way Shear (Punching Shear): Note: This requires a 24" wide footing


Minten

Reviewed By Date

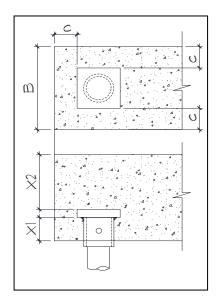
3/21/2019 REV2

Date

DIMENSIONS AND PROPERTIES

DIMENSIONS AND PROPERTIES - CONT'D

Known Concrete Properties (No Plate):


X1 =	N/A	Bottom clear dist. (in)	[Post-Contruction Application]
X2 =	19.0	Top clear distance (in)	[Assumed min.]
c =	19.0	Side clear distance (in)	[Min. 4" per IBC 1810.3.11]
$f_c' =$	3,000	Concrete compressive s	trength (psi)

Calculated Concrete Properties:

B = 44.0 Concrete width (in)

Known Concrete Properties (Added Plate):

X1 =	N/A	Bottom clear dist. (in)	[Post-Contruction Application]
X2 =	16.0	Top clear distance (in)	[Assumed min.]
c =	16.0	Side clear distance (in)	[Min. 4" per IBC 1810.3.11]
$f_c' =$	3,000	Concrete compressive s	trength (psi)

Calculated Concrete Properties:

B = 42.0 Concrete width (in)

Known Head Assembly Sleeve Properties:

D=	3.500	Sleeve Diameter		
M=	0.188	Sleeve Wall Thickness (in)		
A=	8.500	Length of Sleeve (in)		
$F_y =$	42	Steel yield strength of sleeve (ksi)		
$F_u =$	58	Steel tensile strength of sleeve (ksi)		
$t_g =$	0.0034	Galvanized coating thickness (in) [assumed min. AC358 3.9]		
t _c =	0.013	Corrosion loss (in) [0.013 galv., 0.036 bare per AC358 3.9]		
E =	29000	Modulus of elasticity (ksi)		
D'=	3.494	Sleeve outer diameter with corrosion loss (in)		
M'=	0.169	Sleeve wall thickness with corrosion loss (in) - (7% reduction per AISC pg. 1-5)		

Known Head Assembly Gusset Plate Properties:

d =	6.00	Gusset length (in)		
b =	5.00	Gusset depth (in)		
t =	0.25	Gusset thickness (in)		
$F_y =$	36	Steel yield strength of gusset (ksi)		
$F_u =$	58	Steel tensile strength of gusset (ksi)		
$t_g =$	0.0034	Galvanized coating thickness (in) [assumed min. AC358 3.9]		
$t_c =$	0.013	Corrosion loss (in) [0.013 galv., 0.036 bare per AC358 3.9]		
d' =	5.997	Gusset length with corrosion loss (in)		
b' =	4.997	Gusset depth with corrosion loss (in)		
M'=	0.244	Gusset thickness with corrosion loss (in)		

^{*}Note: Clear distances are to either a concrete edge or to reinforcement.

DIMENSIONS AND PROPERTIES - CONT'D

Note: Top plate may be added in the field between the footing and the adjustable head assembly angle.

Known Top Plate Properties:

d =	10.000	Top Plate width (in)		
b =	20.000	Top Plate length (in)		
t =	0.625	Top Plate thickness (in)		
$F_y =$	36	Steel yield strength of plate (ksi)		
$F_u =$	58	Steel tensile strength of plate(ksi)		
$t_g =$	0.0034	Galvanized coating thickness (in) [assumed min. AC358 3.9]		
$t_c =$	0.013	Corrosion loss (in) [0.013 galv., 0.036 bare per AC358 3.9]		
E =	29000	Modulus of elasticity (ksi)		
d' =	9.994	Plate width with corrosion loss (in)		
b' =	19.994	Plate length with corrosion loss (in)		
t' =	0.619	Top plate thickness with corrosion loss (in)		

Known Weld Properties:

Size =	10	Weld size in 16th (in)
$F_{EEX} =$	70	Weld yield strength (ksi)

Known Shaft Tested Capacities:

Ps=	119.9	Max Allowable Shaft Compression Capacity (kips) - FROM TESTING
Pb=	96.9	Max Allowable Bracket Compression Capacity (kips) - FROM TESTING

COMPRESSION CAPACITY - CONNECTION OF BRACKET TO STRUCTURE (NO PLATE)

ACI 318, Chapter 14, Section 14.5.5.1

Concrete Two-Way Shear (Punching Shear):

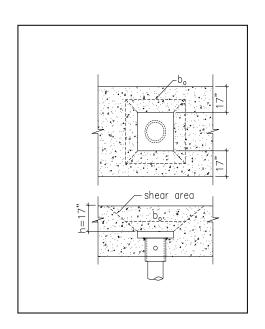
 $\phi = 0.60$

$$V_n = \left[\frac{4}{3} + \frac{8}{3\beta}\right] \sqrt{f_c} b_o h \le 2.66 \sqrt{f_c} b_o h$$
 [ACI Table 14.5.5.1]

 β = ratio of long side to short side of top plate

$$\beta = 2.50$$

 b_0 = shear perimeter = 2*(d'+17")+2*(b'+17")


$$b_0 = 117.98 \text{ in}$$

$$h = X2 = 19.0 in$$

$$V_n = 294.6 \text{ k}$$

$$V' = 0.7 * \phi * V_n$$
 [AC358 3.7.1.2]

√' = 123.72 k

*Note: It is the designer's responsibility to check one way shear in concrete beam applications.

ACI 318, Chapter 14, Section 14.5.6.1

Concrete Bearing:

$$\phi = 0.60$$

$$B_n = 0.85 * f_c^{'} * A_1 \sqrt{\frac{A_2}{A_1}}$$
 [ACI Table 14.5.6.1] Where: $\sqrt{\frac{A_2}{A_1}} \le 2$

 A_1 = loaded area = Adjustable Head Assembly Angle Area

$$A_1 = 89.9 \text{ in}^2$$

A₂ = projected area = (Adjustable Head Assembly Angle Width+17"*2)^2

$$A_2 = 2331.4 \text{ in}^2$$

$$\sqrt{\frac{A_2}{A_1}} = 2.0$$

$$B_n = 458.3 \text{ k}$$

$$B' = 0.7 * \phi * B_n$$
 [AC358 3.7.1.2]

COMPRESSION CAPACITY - CONNECTION OF BRACKET TO STRUCTURE (ADDED PLATE)

ACI 318, Chapter 14, Section 14.5.5.1

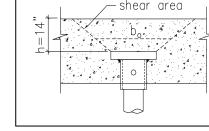
Concrete Two-Way Shear (Punching Shear):

 $\phi = 0.60$

$$V_n = \left[\frac{4}{3} + \frac{8}{3\beta}\right] \sqrt{f_c'} b_o h \le 2.66 \sqrt{f_c'} b_o h$$
 [ACI Table 14.5.5.1]

 β = ratio of long side to short side of top plate

$$\beta = 2.00$$


 b_0 = shear perimeter = 2*(d'+14")+2*(b'+14")

$$b_0 = 123.98 \text{ in}$$

$$h = X2 = 16.0 in$$

$$V_n = 289.0 \text{ k}$$

$$V' = 0.7 * \phi * V_n$$
 [AC358 3.7.1.2]

V' =

121.38 k

ACI 318, Chapter 14, Section 14.5.6.1

Concrete Bearing:

$$\phi = 0.60$$

$$B_{n} = 0.85 * f_{c}^{'} * A_{1} \sqrt{\frac{A_{2}}{A_{1}}} \qquad \qquad \text{[ACI Table 14.5.6.1]}$$

Where: $\sqrt{\frac{A_2}{A}} \le 2$

 A_1 = loaded area = Adjustable Head Assembly Angle Area

$$A_1 = 199.8 \text{ in}^2$$

A₂ = projected area = (Adjustable Head Assembly Angle Width+14"*2)^2

$$A_2 = 2183.4 \text{ in}^2$$

$$\sqrt{\frac{A_2}{A_1}} = 2.0$$

$$B_n = 1019.1 \text{ k}$$

$$B' = 0.7 * \phi * B_n$$
 [AC358 3.7.1.2]

^{*}Note: It is the designer's responsibility to check one way shear in concrete beam applications.

COMPRESSION CAPACITY - CONNECTION OF BRACKET TO STRUCTURE - CONT'D

AISC Section F10.1

Yielding of Adjustable Head Assembly Angle with No End Supports: $\Omega = 1.67$

$$Mn = 1.5My$$
 where, $My = S*Fy$

$$My = 51.63 \text{ k-in}$$

 $Mn = 77.45 \text{ k-in}$

$$w = \frac{2Mn}{l^2}$$
 where, $l = 7.50$ in (angle length/2)

$$w = 2.76 \text{ k/in}$$

$$b' = 14.994$$
 in (angle length)

$$P = wb = 41.32 \text{ k}$$

$$\frac{Pn}{\Omega} = \frac{24.74 \text{ k}}{}$$
 GREATER CAPACITY ACHIEVED W/ END SUPPORTS

AISC Page 14-4 to 14-6

Bending of Top Plate with No End Supports: $\Omega = 1.67$

$$\frac{P_n}{\Omega} = \frac{\left(\frac{t'}{l}\right)^2 F_y BN}{3.33}$$
 [AISC Page 14-6]

$$B = d' =$$
 9.99 in (top plate width)

$$N = b' =$$
 19.99 in (top plate length)
 $D' =$ 1.221 in (all thread diameter)

$$\lambda = 1 \text{ (page 14-5)}$$

$$l = \max(m, n, \lambda n')$$
 Where: $m = \frac{N - 0.95(D')}{2}$ $n = \frac{B - 0.8(D')}{2}$ $n' = \frac{\sqrt{(D')(D')}}{4}$ $n' = \frac{\sqrt{(D')(D')}}{4}$ $n' = \frac{\sqrt{(D')(D')}}{4}$

$$\frac{P_n}{\Omega} = \frac{9.33 \text{ k}}{2}$$

Total Capacity of Angle and Additional Top Plate: $\frac{P_n}{O} = \frac{\text{GREATER CAPACITY}}{\text{ACHIEVED W/END SUPPORTS}}$

$$\frac{P_n}{Q} =$$
 34.07 k

GREATER CAPACITY

Note: Field cut-to-fit pipe supports are required at the ends of the angle, between the angle and head plate.

COMPRESSION CAPACITY - INTERNAL STRENGTH OF BRACKET W/ PIPE SUPPORTS

Note: In order to prevent yielding of the adjustable head assembly angle due to bending, field cut-to-fit pipe supports must be installed on each side of the angle between the angle and the head assembly head plate. The pipe must be A500 steel with a minimum 2 3/8" diameter and have a minimum thickness of 3/16".

Note: Per AISC Section J2.2b, maximum weld size shall be not greater than the thickness of the material if material is less than 1/4" thick, or not greater than the material thickness minus 1/16" if material is greater than 1/4".

AISC Section J2.4

Welded Connection of Gusset Plate to Sleeve - Weld Metal: $\Omega = 2.0$ Where: $A_{we} = t_{\rho}L$

 $R_{n}=A_{we}F_{nw}$ [AISC Eq. J2-4] material thickness= 0.188 " weld size = 0.625 " Max Weld = 0.188 "

t_= 0.130 " (includes corrosion loss, one side of weld)

L= 4.997 " (g A_w = 0.649 in^2 4.997 " (gusset depth)

$$F_{nw} = 0.60 F_{EXX} \left(1 + 0.5 \sin^{1.5}(\theta) \right)$$
 [AISC Equation J2-5] $\theta = 90^{\circ}$

 $F_{w}=$ 63 ksi $R_n = 40.87 \text{ k}$

$$\frac{R_n}{\Omega} = \frac{20.43 \text{ k (each gusset plate)}}{}$$

AISC Section J4.2

Welded Connection of Gusset to Sleeve - Base Metal:

Shear Yie	ld-	$R_{n} = 0.6F_{n}A_{n}$	[AISC Equation J4-3]	Shear Ru	upture	$R_n = 0.6 F_u A_n$ [AISC Equation J4-4]
		$^{n}\Omega = 1.50^{\circ}$	[AISC Equation J4-3]			$\Omega = 2.0$
Sleeve:	$A_g =$	0.84		Sleeve:	$A_g =$	0.84 in^2
	$R_n=$	21.24	k		$R_n =$	29.33 k
Gusset:	$A_g =$	1.22	in ²	Gusset:	$A_g =$	1.22 in ²
	$R_n=$	26.31	k		$R_n =$	42.39 k
$\frac{R_n}{\Omega} =$	=	14.16 k		$\frac{R_n}{\Omega} =$:	14.66 k
$\frac{R_n}{\Omega} =$:	14.16 k	[Min of above] - (each	gusset pla	ate)	

Total Capacity of Adjustable Head Assembly (Bracket) with Pipe Supports (Gusset Welds)

Bracket capacity at each end of the head assembly angle = capacity of 2 gusset plates=

Assuming a uniform load across the top of the angle, the load at the center support = 2*each end support

Total Capacity of the Head Assembly (Bracket) =

113.26 kips

MECHANICAL FAILURE

28.31 kips

CTL | THOMPSON, INC. PROJECT NO. FC08472 3/21/2019 REV2 PAGE 8 OF 8

SUMMARY

For Concrete Capacity with End Supports and Added Top Plate:

Compression

113.3 k with $b_0 h = 1983.60 \text{ in}^2$

Controlled by: Total Capacity of Adjustable Head Assembly (Bracket) with Pipe Supports

(Gusset Welds)

For Concrete Capacity with End Supports and No Top Plate:

Compression

113.3 k **with b_oh =** 2241.53 in²

Controlled by: Total Capacity of Adjustable Head Assembly (Bracket) with Pipe Supports

(Gusset Welds)

CTL | THOMPSON, INC. PROJECT NO. FC08472 3/21/2019 REV2 PAGE 9 OF 8

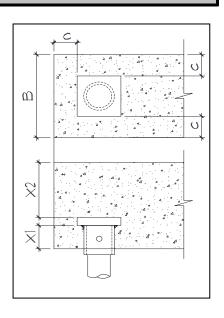
ALTERNATE CONCRETE PARAMETERS - DIMENSIONS AND PROPERTIES

Concrete Properties Alt. #1 (No Plate):

X1 =	N/A	Bottom clear dist. (in)	[Post-Contruction Application]
X2 =	8.0	Top clear distance (in)	[Assumed min.]
c =	9.0	Side clear distance (in)	[Min. 4" per IBC 1810.3.11]
$f_c' =$	3,000	Concrete compressive s	trength (psi)

Calculated Concrete Properties:

B = 24.0	Concrete width (in)
----------	---------------------


Concrete Properties Alt. #2 (Added Plate):

X1 =	N/A	Bottom clear dist. (in)	[Post-Contruction Application]
X2 =	12.0	Top clear distance (in)	[Assumed min.]
c =	9.0	Side clear distance (in)	[Min. 4" per IBC 1810.3.11]
$f_c' =$	3,000	Concrete compressive strength (psi)	

Calculated Concrete Properties :

B = 24.0 Concrete width (in)

*Note: Clear distances are to either a concrete edge or to reinforcement.

ALT. #1 CONCRETE COMPRESSION CAPACITY - BRACKET TO STRUCTURE (NO PLATE)

ACI 318, Chapter 14, Section 14.5.5.1

Concrete Two-Way Shear (Punching Shear):

 $\phi = 0.60$

$$V_{n} = \left[\frac{4}{3} + \frac{8}{3\beta}\right] \sqrt{f_{c}'} b_{o} h \le 2.66 \sqrt{f_{c}'} b_{o} h$$
 [ACI Table 14.5.5.1]

 β = ratio of long side to short side of top plate

$$\beta = 2.50$$

 b_0 = shear perimeter = 2*(d'+8")+2*(b'+8")

$$b_0 = 73.98 \text{ in}$$

$$h = X2 = 8.0 in$$

$$V_{n} = 77.8 \text{ k}$$

$$V^{'} = 0.7 * \phi * V_n$$
 [AC358 3.7.1.2]

*Note: It is the designer's responsibility to check one way shear in concrete beam applications.

ACI 318, Chapter 14, Section 14.5.6.1

Concrete Bearing:

$$\phi = 0.60$$

$$B_{n} = 0.85 * f_{c}^{'} * A_{1} \sqrt{\frac{A_{2}}{A_{1}}}$$
 [ACI Table 14.5.6.1] Where: $\sqrt{\frac{A_{2}}{A_{1}}} \leq 2$

 A_1 = loaded area = Adjustable Head Assembly Angle Area

$$A_1 = 89.9 \text{ in}^2$$

A₂ = projected area = (Adjustable Head Assembly Angle Width+17"*2)^2

$$A_2 = 681.7 \text{ in}^2$$

$$\sqrt{\frac{A_2}{A_1}} = 2.0$$

$$B_n = 458.3 \text{ k}$$

$$B' = 0.7 * \phi * B_n$$
 [AC358 3.7.1.2]

ALT. #2 CONCRETE COMPRESSION CAPACITY - BRACKET TO STRUCTURE (NO PLATE)

ACI 318, Chapter 14, Section 14.5.5.1

Concrete Two-Way Shear (Punching Shear):

 $\phi = 0.60$

$$V_{n} = \left[\frac{4}{3} + \frac{8}{3\beta}\right] \sqrt{f_{c}^{'}} b_{o} h \le 2.66 \sqrt{f_{c}^{'}} b_{o} h$$
 [ACI Table 14.5.5.1]

 β = ratio of long side to short side of top plate

$$\beta = 2.50$$

 b_0 = shear perimeter = 2*(d'+9")+2*(b'+12")

$$b_0 = 83.98 \text{ in}$$

$$h = X2 = 12.0 in$$

$$V_{n} = 132.4 \text{ k}$$

$$V^{'} = 0.7 * \phi * V_n$$
 [AC358 3.7.1.2]

*Note: It is the designer's responsibility to check one way shear in concrete beam applications.

ACI 318, Chapter 14, Section 14.5.6.1

Concrete Bearing:

$$\phi = 0.60$$

$$B_{n} = 0.85 * f_{c}^{'} * A_{1} \sqrt{\frac{A_{2}}{A_{1}}}$$
 [ACI Table 14.5.6.1] Where: $\sqrt{\frac{A_{2}}{A_{1}}} \leq 2$

 A_1 = loaded area = Adjustable Head Assembly Angle Area

$$A_1 = 89.9 \text{ in}^2$$

A₂ = projected area = (Adjustable Head Assembly Angle Width+14"*2)^2

$$A_2 = 989.6 \text{ in}^2$$

$$\sqrt{\frac{A_2}{A_1}} = 2.0$$

$$B_n = 458.3 \text{ k}$$

$$B' = 0.7 * \phi * B_n$$
 [AC358 3.7.1.2]

CTL | THOMPSON, INC. PROJECT NO. FC08472 3/21/2019 REV2 PAGE 12 OF 8

ALTERNATE CONCRETE PARAMETERS - SUMMARY

For Concrete Capacity with Alternate #1 Concrete Parameters:

Compression

32.7 k With footing width = 24.0 in. and footing thickness = 8.0 in.

Controlled by: Concrete Two-Way Shear (Punching Shear):

For Concrete Capacity with Alternate #2 Concrete Parameters:

Compression

55.6 k With footing width = 24.0 in. and footing thickness = 12.0 in.

Controlled by: Concrete Two-Way Shear (Punching Shear):